Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Abscisic acid ameliorates glucose tolerance and obesity-induced inflammation

    Thumbnail
    View/Open
    AG_Dissertation.pdf (1.998Mb)
    Downloads: 728
    Date
    2007-10-19
    Author
    Guri, Amir Joseph
    Metadata
    Show full item record
    Abstract
    Obesity is a disease characterized by chronic inflammation and the progressive loss in systemic insulin sensitivity. One of the more effective medications in the treatment of insulin resistance have been the thiazolidinediones (TZDs), which act through the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma ). Due to the many side-effects of TZDs, our laboratory sought out a natural phytochemical, abscisic acid (ABA), with chemical similarities to TZDs. Our first study demonstrated that ABA activates PPARgamma in vitro and significantly ameliorates white adipose tissue (WAT) inflammation and glucose tolerance in db/db mice. We next further examined the effect of ABA on the phenotype of adipose tissue macrophages (ATMs). In doing so, we discovered two separate ATM populations which differed in their expression of the macrophage surface glycoprotein and maturation marker F4/80 (F4/80hi vs F4/80lo). Dietary ABA-supplementation significantly reduced F4/80hiCCR2+ ATMs and had no effect on the F4/80lo population. Utilizing a tissue-specific knockout generated through Cre-lox recombination, we were able to determine that this effect was dependent on PPARgamma in immune cells. To further characterize the differences between the ATM subsets that were affected by ABA, we performed a multi-organ assessment (i.e., WAT, skeletal muscle and liver) of the effect of diet-induced obesity on the phenotype of infiltrating macrophages and T cells into metabolic organs. Based on our new data, we formulated a model by which F4/80hiCCR2hi ATMs infiltrate WAT and ultimately induce a CD11c+ pro-inflammatory phenotype in the resident F4/80loCCR2lo subset. Ultimately, our findings provide evidence that ABA has potential as an alternative preventive intervention, expound the role of PPARgamma in immune cells and, in general, expand our knowledge concerning the immunopathogenesis of obesity-induced insulin resistance.
    URI
    http://hdl.handle.net/10919/29433
    Collections
    • Doctoral Dissertations [16590]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us