Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hypolimnetic Aerators: Predicting Oxygen Transfer and Water Flow Rate

    Thumbnail
    View/Open
    ETD1.PDF (271.8Kb)
    Downloads: 144
    Date
    1998-10-30
    Author
    Burris, Vickie Lien
    Metadata
    Show full item record
    Abstract
    The objective of this research was to characterize the performance of hypolimnetic aerators with respect to oxygen transfer and water flow rate to allow the development of two comprehensive process models. The oxygen transfer model is the first model that applies discrete-bubble principles to a hypolimnetic aerator, and the water flow rate model is the first that applies an energy balance to this particular type of lake aeration device. Both models use fundamental principles to predict hypolimnetic aerator performance, as opposed to empirical correlations. The models were verified with data collected from a full-scale hypolimnetic aerator installed in Lake Prince, which is a water supply reservoir for the City of Norfolk, Virginia. Water flow rate, gas-phase holdup and dissolved oxygen profiles were measured as a function of air flow rate. The initial bubble size was calculated by the oxygen transfer model using field data. The range of bubble diameters obtained using the model was 2.3-3.1 mm. The Sauter mean diameters of bubbles measured in a laboratory system ranged from 2.7-3.9 mm. The riser and downcomer DO profiles and gas holdups predicted by the model are in close agreement with experimental results. The water flow rate model was fitted to the experimental water velocity by varying the frictional loss coefficient for the air-water separator. An empirical correlation that predicts the loss coefficient as a function of superficial water velocity was obtained. The results of the correlation were similar to those predicted by literature equations developed for external airlift bioreactors.
    URI
    http://hdl.handle.net/10919/30936
    Collections
    • Masters Theses [19615]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us