Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low Frequency Finite Element Modeling of Passive Noise Attenuation in Ear Defenders

    Thumbnail
    View/Open
    Masters_Thesis_Aamir.pdf (6.316Mb)
    Downloads: 2450
    Date
    2005-01-12
    Author
    Anwar, Aamir
    Metadata
    Show full item record
    Abstract
    Noise levels in areas adjacent to high performance jets have increased monotonically in the past few years. When personnel are exposed to such high noise fields, the need for better hearing protection is inevitable. Adequate hearing protection may be achieved through the use of circumaural ear defenders, earplugs or both. This thesis focuses on identifying the dominant physical phenomena, responsible for the low frequency (0 – 300 Hz) acoustic response inside the earmuffs. A large volume earcup is used with the undercut seal for the study. The significance of this research is the use of finite element methods in the area of hearing protection design. The objectives of this research are to identify the dominant physical phenomena responsible for the loss of hearing protection in the lower frequency range, and develop FE models to analyze the effects of structural and acoustic modes on the acoustic pressure response inside the earcup. It is found that there are two phenomena, which are primarily responsible for the lower frequency acoustic response inside the earmuffs. These modes are recognized in this thesis as the piston mode and the Helmholtz mode. The piston mode occurs due to the dynamics of the earcup and seal at 150 Hz, which results in loss of hearing protection. The Helmholtz mode occurs due to the presence of leaks. The resonant frequency of the Helmholtz mode and the pressure response depends on the leak size.
    URI
    http://hdl.handle.net/10919/31186
    Collections
    • Masters Theses [20942]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us