Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Infrared Spectroscopic Measurement of Titanium Dioxide Nanoparticle Shallow Trap State Energies

    Thumbnail
    View/Open
    Burrows_SP_T_2010.pdf (17.22Mb)
    Downloads: 473
    Date
    2010-02-10
    Author
    Burrows, Steven Preston
    Metadata
    Show full item record
    Abstract
    Within the â forbiddenâ range of electron energies between the valence and conduction bands of titanium dioxide, crystal lattice irregularities lead to the formation of electron trapping sites. These sites are known as shallow trap states, where â shallowâ refers to the close energy proximity of those features to the bottom of the semiconductor conduction band. For wide bandgap semiconductors like titanium dioxide, shallow electron traps are the principle route for thermal excitation of electrons into the conduction band.

    The studies described here employ a novel infrared spectroscopic approach to determine the energy of shallow electron traps in titanium dioxide nanoparticles. Mobile electrons within the conduction band of semiconductors are known to absorb infrared radiation. As those electrons absorb the infrared photons, transitions within the continuum of the conduction band produce a broad spectral signal across the entire mid-infrared range. A Mathematical expression based upon Fermiâ Dirac statistics was derived to correlate the temperature of the particles to the population of charge carriers, as measured through the infrared absorbance. The primary variable of interest in the Fermi â Dirac expression is the energy difference between the shallow trap states and the conduction band. Fitting data sets consisting of titanium dioxide nanoparticle temperatures and their associated infrared spectra, over a defined frequency range, to the Fermiâ Dirac expression is used to determine the shallow electron trap state energy.

    URI
    http://hdl.handle.net/10919/31342
    Collections
    • Masters Theses [19687]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us