Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of the Effects of Various Energy and Exergy-Based Objectives/Figures of Merit on the Optimal Design of High Performance Aircraft System

    Thumbnail
    View/Open
    Vijay_Thesis.pdf (1.696Mb)
    Downloads: 426
    Date
    2005-02-18
    Author
    Periannan, Vijayanand
    Metadata
    Show full item record
    Abstract
    This thesis work shows the advantages of applying exergy-based analysis and optimization methods to the synthesis/design and operation an Advanced Aircraft Fighter (AAF) with three subsystems: a Propulsion Subsystem (PS), an Environmental Control Subsystem (ECS), and an Airframe Subsys-tem - Aerodyanmics (AFS-A) is used to illustrate these advantages. Thermodynamic (both energy and exergy), aerodynamic, geometric, and physical models of the components comprising the subsystems are developed and their interactions defined. An exergy-based parametric study of the PS and its components is first performed in order to show the type of detailed information on internal system losses. This is followed by a series of constrained, system synthesis/design optimizations based on five different objective functions, which define energy-based and exergy-based measures of performance. A first set of optimizations involving four of the objectives (two energy-based and two exergy-based) are performed with only PS and ECS degrees of freedom. Losses for the AFS-A are not incorporated into the two exergy-based objectives. The results show that as expected all four objectives globally produce the same optimum vehicle.A second set of optimizations is then performed with AFS-A degrees of freedom and again with two energy- and exergy-based objectives. However, this time one of the exergy-based objectives incorporates AFS-A losses directly into the objective. The results are that this latter objective produces a significantly better optimum vehicle. Thus, an exergy-based approach is not only able to pinpoint where the greatest inefficiencies in the system occur but produces a superior optimum vehicle as well by accounting for irreversibility losses in subsystems (e.g., the AFS-A) only indirectly tied to fuel usage.
    URI
    http://hdl.handle.net/10919/31405
    Collections
    • Masters Theses [19412]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us