Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Finite Element Simulation of the MRTA Test of a Human Tibia

    Thumbnail
    View/Open
    Ragone_thesis_final.pdf (1.410Mb)
    Downloads: 109
    Date
    2006-04-12
    Author
    Ragone, Jared George
    Metadata
    Show full item record
    Abstract
    The mechanical response tissue analyzer (MRTA) tests long bone quality through low frequency, low amplitude vibration in vivo. The MRTA measures complex stiffness over a range of low frequencies, offering a wealth of information on bone composition. Previous MRTA interpretation used lumped parameter algorithms focused on reliably estimating the boneâ s bending stiffness (EI). To interpret the stiffness response, the first finite element (FE) simulation of the MRTA test of a human tibia was developed to identify dominant parameters that will possibly make linear prediction algorithms more suitable for estimating bone quality.

    Five FE models were developed in stages by adding complexity. Starting with a solid mesh of the diaphysis, each model was created from its predecessor by sequentially adding: a medullary canal, linear elastic (LE) cancellous epiphyses, linear viscoelastic (LVE) cancellous and cortical bone, and a LVE skin layer. The models were simulated in vibration using a direct steady-state dynamics procedure in ABAQUS to calculate the complex stiffness response.

    Natural frequency analysis (ABAQUS) verified that the FE models accurately reproduced previous experimental and computational resonances for human tibiae. A solid, LE cortex roughly matched the dominant frequency from experimental MRTA raw data. Adding the medullary canal and LVE properties to bone did not greatly spread the peak or shift the resonant frequency. Adding the skin layer broadened the peak response to better match the MRTA experimental response. These results demonstrate a simulation of the MRTA response based upon published geometries and material data that captures the essence of the instrument.

    URI
    http://hdl.handle.net/10919/31791
    Collections
    • Masters Theses [19412]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us