Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An augmented Lagrangian algorithm for optimization with equality constraints in Hilbert spaces

    Thumbnail
    View/Open
    etd.pdf (628.3Kb)
    Downloads: 411
    Date
    2001-04-30
    Author
    Maruhn, Jan Hendrik
    Metadata
    Show full item record
    Abstract
    Since augmented Lagrangian methods were introduced by Powell and Hestenes, this class of methods has been investigated very intensively. While the finite dimensional case has been treated in a satisfactory manner, the infinite dimensional case is studied much less. The general approach to solve an infinite dimensional optimization problem subject to equality constraints is as follows: First one proves convergence for a basic algorithm in the Hilbert space setting. Then one discretizes the given spaces and operators in order to make numerical computations possible. Finally, one constructs a discretized version of the infinite dimensional method and tries to transfer the convergence results to the finite dimensional version of the basic algorithm. In this thesis we discuss a globally convergent augmented Lagrangian algorithm and discretize it in terms of functional analytic restriction operators. Given this setting, we prove global convergence of the discretized version of this algorithm to a stationary point of the infinite dimensional optimization problem. The proposed algorithm includes an explicit rule of how to update the discretization level and the penalty parameter from one iteration to the next one - questions that had been unanswered so far. In particular the latter update rule guarantees that the penalty parameters stay bounded away from zero which prevents the Hessian of the discretized augmented Lagrangian functional from becoming more and more ill conditioned.
    URI
    http://hdl.handle.net/10919/32098
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us