Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using Artificial Life to Design Machine Learning Algorithms for Decoding Gene Expression Patterns from Images

    Thumbnail
    View/Open
    ETD_final.pdf (557.9Kb)
    Downloads: 287
    Date
    2008-04-30
    Author
    Zaghlool, Shaza Basyouni
    Metadata
    Show full item record
    Abstract
    Understanding the relationship between gene expression and phenotype is important in many areas of biology and medicine. Current methods for measuring gene expression such as microarrays however are invasive, require biopsy, and expensive. These factors limit experiments to low rate temporal sampling of gene expression and prevent longitudinal studies within a single subject, reducing their statistical power. Thus methods for non-invasive measurements of gene expression are an important and current topic of research. An interesting approach (Segal et al, Nature Biotechnology 25 (6) 2007) to indirect measurements of gene expression has recently been reported that uses existing imaging techniques and machine learning to estimate a function mapping image features to gene expression patterns, providing an image-derived surrogate for gene expression. However, the design of machine learning methods for this purpose is hampered by the cost of training and validation. My thesis shows that populations of artificial organisms simulating genetic variation can be used for designing machine learning approaches to decoding gene expression patterns from images. If analysis of these images proves successful, then this can be applied to real biomedical images reducing the limitations of invasive imaging. The results showed that the box counting dimension was a suitable feature extraction method yielding a classification rate of at least 90% for mutation rates up to 40%. Also, the box-counting dimension was robust in dealing with distorted images. The performance of the classifiers using the fractal dimension as features, actually, seemed more vulnerable to the mutation rate as opposed to the applied distortion level.
    URI
    http://hdl.handle.net/10919/32110
    Collections
    • Masters Theses [21208]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us