• Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Piezometry and Strain Rate Estimates Along Mid-Crustal Shear Zones

    Thumbnail
    View/Open
    Francsis_MK_T_2012.pdf (2.362Mb)
    Downloads: 271
    Date
    2012-04-20
    Author
    Francsis, Matthew Keegan
    Metadata
    Show full item record
    Abstract
    Dynamically recrystallized quartz microstructure and grainsize evolution along mid-crustal shear zones allows for the estimation of tectonic driving stresses and strain rates acting in the mid-crust. Quartz-rich tectonites from three exhumed mid-crustal shear zones, the Main Central Thrust (MCT; Sutlej valley, NW India), South Tibetan Detachment System (STDS; Rongbuk valley, S Tibet), and Moine thrust (NW Scotland), were analyzed. Deformation temperatures estimated from quartz microstructural and petrofabric thermometers indicate steep apparent thermal gradients (80â 420 °C/km) across 0.5â 2.3 km thick sample transects across each shear zone. Quartz recrystallization microstructures evolve from transitional bulging/sub-grain rotation to dominant grain boundary migration at ~ 200 m structural distance as traced away from each shear zone. Optically measured quartz grainsizes increase from ~ 30 μm nearest the shear zones to 120+ μm at the largest structural distances. First-order Zener space analysis across the Moine nappe suggests strong phyllosilicate control on recrystallized quartz grainsize. Recrystallized quartz grainsize piezometry indicates that differential stress levels sharply decrease away from the shear zones from ~ 35 MPa to 10 MPa at ~ 200 m structural distance. Strain rates estimated with quartz dislocation creep flow laws are tectonically reasonable, between 10-12—10-14 s-1. Traced towards each shear zone strain rate estimates first decrease one order of magnitude before rapidly increasing one to two orders of magnitude at structural distances of ~ 200 m. This kinked strain rate profile is likely due to the steep apparent thermal gradients and relatively constant differential stress levels at large structural distances.
    URI
    http://hdl.handle.net/10919/32170
    Collections
    • Masters Theses [17888]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us