Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical Simulation of Nanoscale Flow: A Molecular Dynamics Study of Drag

    Thumbnail
    View/Open
    SIRK.pdf (1013.Kb)
    Downloads: 377
    Date
    2006-04-28
    Author
    Sirk, Timothy
    Metadata
    Show full item record
    Abstract
    The design of pathogen biosensors may soon incorporate beads having a nanoscale diameter, thus making the drag force on a nanoscale sphere an important engineering problem. Flows at this small of a scale begin to appear â grainyâ and may not always behave as a continuous fluid. Molecular dynamics provides an approach to determine drag forces in those nanoscale flows which cannot be described with continuum (Navier-Stokes) theory. This thesis uses a molecular dynamics approach to find the drag forces acting on a sphere and a wall under several different conditions. The results are compared with approximations from a Navier-Stokes treatment and found to be within an order of magnitude despite the uncertainties involved in both the atomic interactions of the molecular dynamics simulation and the appropriate boundary conditions in the Navier-Stokes solution.
    URI
    http://hdl.handle.net/10919/32183
    Collections
    • Masters Theses [19644]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us