Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analytical Methods Development for High-Throughput Photochemisty With Led Arrays

    Thumbnail
    View/Open
    02acspermission.PDF (4.647Mb)
    Downloads: 90
    01Brown_Thesis_EDT.pdf (874.6Kb)
    Downloads: 55
    04taylorfrancispermission.PDF (557.8Kb)
    Downloads: 14
    03elsevierpermission.PDF (4.810Mb)
    Downloads: 38
    Date
    2007-05-03
    Author
    Brown, Jared R.
    Metadata
    Show full item record
    Abstract
    This thesis describes the design, construction, and evaluation of a series of LED array photolysis systems for high throughput photochemistry. Three generations of array systems of increasing sophistication are evaluated using calorimetric measurements and potassium tris(oxalato)ferrate(III) chemical actinometry. The results are analyzed using descriptive statistics and analysis of variance (ANOVA). The LEDs in the third generation array were shown to be statistically equivalent, with respect to light output, according to physical and chemical actinometry experiments. The third generation LED array was compared with a traditional 1000 W Xe arc lamp source in terms of cost, light intensity, and light stability. Two constant current drivers were evaluated with respect to LED array performance. The optimized third generation LED array was evaluated as the photolysis source for photochemical hydrogen production experiments using the supramolecular catalyst [{(bpy)2Ru(dpp)}2RhCl2](PF6)5.
    URI
    http://hdl.handle.net/10919/32709
    Collections
    • Masters Theses [19418]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us