Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Modeling Approach for Evaluating Network Impacts of Operational-Level Transportation Projects

    Thumbnail
    View/Open
    JDThesis.PDF (2.477Mb)
    Downloads: 349
    Date
    2000-05-10
    Author
    Diekmann, Joshua James
    Metadata
    Show full item record
    Abstract
    This thesis presents the use of microscopic traffic simulation models to evaluate the effects of operational-level transportation projects such as ITS. A detailed framework outlining the construction and calibration of microscopic simulation models is provided, as well as the considerations that must be made when analyzing the outputs from these models. Two case studies are used to reinforce the concepts presented. In addition, these case studies give valuable insight for using the outlined approach under real-world conditions. The study indicates a promising future for the use of microsimulation models for the purpose of evaluating operational-level projects, as the theoretical framework of the models is sound, and the computational strategies used are feasible. There are, however, instances where simulation models do not presently model certain phenomena, or where simulation models are too computationally intensive. Comprehensive models that integrate microscopic simulation with land use planning and realistic predictions of human behavior, for instance, cannot practically be modeled in contemporary simulation packages. Other than these instances, the largest obstacles to using simulation packages were found to be the manpower required and the complexity of constructing a model. Continuing research efforts and increasing computer speeds are expected to resolve the former issues. Both of the latter concerns are alleviated by the approach presented herein. Within the approach framework detailed in this thesis, particular emphasis is given to the calibration aspects of constructing a microscopic simulation model. Like the simulation process as a whole, calibration is both an art and a science, and relies on sound engineering judgement rather than indiscriminate, formulaic processes.
    URI
    http://hdl.handle.net/10919/33128
    Collections
    • Masters Theses [18654]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us