Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental infection with Sarcocystis neurona alters the immune response: the effect on CD4+, CD8+, B-cell, monocyte and granulocyte populations in horses

    Thumbnail
    View/Open
    lewisthesiscorrected.pdf (5.015Mb)
    Downloads: 213
    Date
    2009-06-11
    Author
    Lewis, Stephanie Rochelle
    Metadata
    Show full item record
    Abstract
    Previous studies have demonstrated differences in CD4+, CD8+ and B-cell populations between EPM affected and normal horses. The overall goal of our project was to further define the immune deficiencies associated with S. neurona infection. We hypothesized that PMA/I stimulated suppression in EPM horses is due to decreased proliferation of monocytes, CD4+ and CD8+ cells. Our objectives were 1) to determine whether S. neurona infection causes an increase in apoptosis of a particular immune subset, and 2) to determine whether S. neurona causes a decrease in the number of cellular divisions (proliferation) of a particular immune cell subset.

    For this study, nine S. neurona antibody negative, immunocompetent horses were obtained. Baseline neurologic examinations, SnSAG1 (S. neurona Surface Antigen 1) ELISAs on cerebrospinal fluid (CSF) and serum, and baseline immune function assays were performed. Horses were randomly divided into groups. Five horses were challenged for ten days via intravenous injection of autologous lymphocytes infected with S. neurona. Neurologic parameters of all horses were assessed for 70 days following infection. Immune function was based on proliferation responses to mitogens, as assessed through thymidine incorporation. Enumeration of cellular subsets, degree of apoptosis and number of cellular divisions were assessed through flow cytometry. SnSAG1 ELISA of serum and CSF samples performed post-infection confirmed infection and disease. All infected horses displayed moderate neurologic signs on clinical examination. Some significant differences in cellular activities were noted. Additionally, this is the first time the method using S. neurona infected lymphocytes has been reproduced successfully by different investigators.

    URI
    http://hdl.handle.net/10919/33919
    Collections
    • Masters Theses [19687]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us