Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and Characterization of a Hardware Encryption Management Unit for Secure Computing Platforms

    Thumbnail
    View/Open
    thesis.pdf (1.238Mb)
    Downloads: 341
    Date
    2005-06-03
    Author
    Mahar, Anthony J.
    Metadata
    Show full item record
    Abstract
    Software protection is increasingly necessary for a number of applications, ranging from commercial systems and digital content distributors, to military systems exposed in the field of operations. As computing devices become more pervasive, and software more complex, insufficiencies with current software protection mechanisms have arisen. Software--only and data--only protection systems have resulted in broken systems that are vulnerable to loss of software confidentiality and integrity. A growing number of researchers have suggested that hardware encryption mechanisms be employed to enforce software protection. Although there are several competing architectures, few offer the necessary protection while remaining compatible with modern computing systems and models. The Virginia Tech Secure Software Platform is the first architecture to achieve both increased protection and usability. This thesis presents the design and implementation of a fast, flexible Encryption Management Unit (EMU) for Virginia Tech Secure Software and compatible platforms. The design is capable of providing decryption of program instructions residing in page--sized sections of memory, without modification to the core processor. The effect of the EMU is modeled with varying application types and system loads. Lastly, a benchmark designed to measure actual performance was created to measure the actual performance of the EMU and validate the models.
    URI
    http://hdl.handle.net/10919/34434
    Collections
    • Masters Theses [21565]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us