Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Passive Cancellation of Common-Mode Electromagnetic Interference in Switching Power Converters

    Thumbnail
    View/Open
    Dan_Cochrane_MS_Thesis.pdf (7.899Mb)
    Downloads: 48846
    Date
    2002-08-10
    Author
    Cochrane, Daniel
    Metadata
    Show full item record
    Abstract
    It is well known that common-mode (CM) conducted electromagnetic interference (EMI) is caused by the common-mode current flowing through the parasitic capacitance of transistors, diodes, and transformers to ground in the power circuit. Because of the potential for interference with other systems as well as governmental regulations, it is necessary to attenuate this noise. Ordinarily this must be accomplished by using a magnetic choke on the input power lines, which can result in large penalties to the overall size, weight, and cost of the completed system. In order to lessen the requirement for this magnetic choke, there has been in recent years a desire to introduce noise cancellation techniques to the area of EMI. This text introduces a method of canceling the common-mode EMI by using a compensating transformer winding and a capacitor. Compared with active cancellation techniques, it is much simpler and requires no additional transistors and gate-drive circuitry since it merely adds a small copper winding and a small capacitor. By using this technique the size of the EMI filter can be reduced, especially for applications requiring high currents. In this thesis a survey of CM noise reduction techniques is presented, encompassing conventional and active cancellation techniques. The new method for passive noise cancellation is presented, which is then applied to families of isolated DC/DC converters, non-isolated DC/DC converters, and DC/AC inverters and motor drives. The method, results, and ramifications of this technique are presented in order of appearance.
    URI
    http://hdl.handle.net/10919/34449
    Collections
    • Masters Theses [18654]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us