Hydrodynamic Shock Wave Effects on Protein Functionality

Files

TR Number

Date

1999-08-25

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

USDA Select bovine Biceps femoris (BF) samples were divided into four sections and randomly assigned to three hydrodynamic shock wave (HSW) treatments and a control. Different amounts of explosive (105 g, H1; 200 g, H2; 305 g, H3) were suspended in the center of the hemishell tank, 26.7 cm above the vacuum packaged beef placed on the bottom center of that water-filled tank and detonated, representing three HSW treatments. In addition, BF steaks (2.54-cm thick) from a different and limited common source (2 muscles) were packaged with each HSW designated BF section. These served as internal refernce steaks (IRS) for the six replications to determine if the HSW treatments physically altered the structural integrity of the meat. H1 and H3 decreased (P<0.05) Warner-Bratzler shear values of the IRS from 3.86 and 3.99 kg (controls) to 3.01 and 3.02 kg (HSW), respectively. H2 shear values, 3.86 (control) to 3.46 kg (HSW) were not different (P> 0.05). HSW and control BF sections were analyzed for protein solubility and then used to manufacture frankfurters formulated with 2.0% NaCl, 0.5 % sodium tripolyphosphate, 156 ppm sodium nitrite, 0.42 % sodium erythorbate, 2.0 % sucrose, and 25 % water. Frankfurters (cooked to 71 C) were evaluated for cooking yield, CIE Lab*, nitrosylhemochrome, Texture Profile Analysis (hardness, cohesiveness), and stress and strain (torsion testing). Compared to the control samples, the HSW did not affect (P>0.05) myofibrillar or sarcoplasmic protein solubility, cooking yield, or color. Textural properties and gel strength of the frankfurters were not affected (P>0.05) by the HSW. These results indicate that beef trim obtained from HSW processed meat can be used interchangeably with normal meat trim in the production of further processed meats since the functionality of meat protein is not affected significantly by the HSW process.

Description

Keywords

tenderness, protein functionality, frankfurters, hydrodynamic shock waves

Citation

Collections