Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interactions Between Copper and Chlorine Disinfectants: Chlorine Decay, Chloramine Decay and Copper Pitting

    Thumbnail
    View/Open
    CKN_Thesis_12-6-05.pdf (1.481Mb)
    Downloads: 612
    Date
    2005-08-16
    Author
    Nguyen, Caroline Kimmy
    Metadata
    Show full item record
    Abstract
    Interactions between copper and chlorine disinfectants were examined from the perspective of disinfectant decay and copper pitting corrosion. Sparingly soluble cupric hydroxide catalyzed the rapid decay of free chlorine, which in turn, led to production of less soluble and more crystalline phases of cupric hydroxide. The catalytic activity of the cupric hydroxide was retained over multiple cycles of chlorine dosing. Experiments with chloramine revealed that copper species could also trigger rapid loss of chloramine disinfectant. In copper pipes, loss of free chlorine and chloramine were both rapid during stagnation. Reactivity of the copper to the disinfectants was retained for weeks. Phosphate tended to decrease the reactivity between the copper pipe and chlorine disinfectants. A novel, inexpensive and real-time test to monitor copper pitting corrosion was developed. In a normal pipe, it is not possible to measure the electron flow or pitting current from the pit anode to the cathode. But a new method was developed that can form an active pit on the tip of a copper wire, which in turn, allows the pitting current to be measured. Preliminary experiments presented herein have proven that this technique has promise in at least one water condition known to cause pitting. The method also quickly predicted that high levels of orthophosphate could stop pitting attack in this water, whereas low levels would tend to worsen pitting. Future research should be conducted to examine this technique in greater detail.
    URI
    http://hdl.handle.net/10919/35674
    Collections
    • Masters Theses [21205]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us