• Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mass Properties Calculation and Fuel Analysis in the Conceptual Design of Uninhabited Air Vehicles

    Thumbnail
    View/Open
    Thesis.pdf (1.900Mb)
    Downloads: 205
    ThesisHiResImages.pdf (26.79Mb)
    Downloads: 143
    Date
    2003-12-01
    Author
    Ohanian, Osgar John
    Metadata
    Show full item record
    Abstract
    The determination of an aircraft's mass properties is critical during its conceptual design phase. Obtaining reliable mass property information early in the design of an aircraft can prevent design mistakes that can be extremely costly further along in the development process.

    In this thesis, several methods are presented in order to automatically calculate the mass properties of aircraft structural components and fuel stored in tanks. The first method set forth calculates the mass properties of homogenous solids represented by polyhedral surface geometry. A newly developed method for calculating the mass properties of thin shell objects, given the same type of geometric representation, is derived and explained. A methodology for characterizing the mass properties of fuel in tanks has also been developed. While the concepts therein are not completely original, the synthesis of past research from diverse sources has yielded a new comprehensive approach to fuel mass property analysis during conceptual design. All three of these methods apply to polyhedral geometry, which in many cases is used to approximate NURBS (Non-Uniform Rational B-Spline) surface geometry. This type of approximate representation is typically available in design software since this geometric format is conducive to graphically rendering three-dimensional geometry.

    The accuracy of each method is within 10% of analytical values. The methods are highly precise (only affected by floating point error) and therefore can reliably predict relative differences between models, which is much more important during conceptual design than accuracy. Several relevant and useful applications of the presented methods are explored, including a methodology for creating a CG (Center of Gravity) envelope graph.

    URI
    http://hdl.handle.net/10919/36074
    Collections
    • Masters Theses [17908]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us