Population Biology of the Tan Riffleshell (Epioblasma florentina walkeri) and the Effects of Substratum and Light on Juvenile Propagation

Files
etd.pdf (537.62 KB)
Downloads: 381
TR Number
Date
1999-12-06
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The federally endangered tan riffleshell (Epioblasma florentina walkeri) is restricted to only one known reproducing population, in Indian Creek, Tazewell County, Virginia. Attempts to recover this species by augmenting relic populations throughout its historic range are aided through knowledge of its population biology and requirements in culture environments. Infestations of host fish (fantail darters, Etheostoma flabellare), obtained from four river drainages, with tan riffleshell glochidia showed that significantly more juveniles transformed per fish from infestations on fantail darters from Indian Creek (mean = 59.22 ± 10.01) than on fantail darters from the Roanoke River (mean = 9.45 ± 10.64) (p = 0.024). Number of juveniles from fantail darters collected from Elk Garden and the South Fork Holston River were not significantly different from those of either Indian Creek fish or Roanoke River fish. These results support the hypothesis that mussel-host fish relationships are likely mediated by fish immune responses. Furthermore, this study suggests that this compatibility has resulted from coadaptation between the tan riffleshell and fantail darter populations in Indian Creek.

The tan riffleshell population in Indian Creek was estimated to be 1078 adults (95% CI= 760 - 1853), using Schumacher's modification of Schnabel's maximum likelihood estimator. The sex ratio and size distribution of males and females were approximately equal. Specimen ages, determined from thin-sections of shells, showed that mussels aged by external annuli on shells likely underestimates the true ages of individuals.

Appropriate culture conditions for this species were examined using juveniles of the wavyrayed lampmussel (Lampsilis fasciola) as a surrogate. In the first experiment, juvenile growth and survival was compared between four substratum types (fine sediment, < 120μm; fine sand, 500 μm-800 μm; coarse sand, 1000 μm-1400 μm; and mixed sediment, < 1400 μm) and two light treatments in open versus covered recirculating troughs (2.8 m). Juveniles in fine sediment substratum and covered troughs fared poorest, with 7% survival and growth to only 0.86 mm in length after 16 wk. Juveniles in mixed sediment and open troughs fared best, with 26% survival and growth to 1.09 mm after 16 wk. Additionally, juveniles in fine sand in covered troughs had significantly higher survival (23.1%) than juveniles in fine sediment (p = 0.04), and juveniles in fine sand survived consistently better between light treatments than in the other substrata. There were no significant differences among the other treatments.

A second experiment was performed to determine whether juveniles were responding directly to the presence of light or whether only the increased autochthonous production improved growth and survival. One-half of each of three 2.8 m troughs were covered with 50% shade cloth, while the other sides were left open to ambient light. Additionally, the best and worst sediments from the first experiment (fine sand and fine sediment) were used again to verify the results from the previous experiment. In this case, juveniles in both sides of the troughs grew equally well, but juveniles in the open sides had significantly poorer survival (open mean: 1.78%, sd = 5.01; covered mean: 7.4%, sd = 5.01) (p = 0.046). Fine sediment yielded significantly higher growth of juveniles than fine sand (p = 0.009), with shell lengths of 2.63 mm (sd = 0.075) in fine sediment and 1.94 mm (sd = 0.102) in fine sand. The differences in survival and growth between the two experiments were attributed to differential numbers of chironomids and platyhelminths, which are predators of young juveniles. Additionally, the fine sediment was more tightly packed in the first experiment than in the second, which may have restricted movement and subsequently reduced survival. Light alone likely did not affect juvenile survival and growth; rather, it was seemingly the greater abundance of aufwuchs available as food. This hypothesis was corroborated by a juvenile behavior experiment, which showed that juveniles did not act differently when in tanks not exposed to light versus those open to ambient light.

Description
Keywords
freshwater mussels, juvenile propagation, light regime, sediment preferences, host fish, tan riffleshell
Citation
Collections