Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Plasma Torch Atomizer-Igniter for Supersonic Combustion of Liquid Hydrocarbon Fuels

    Thumbnail
    View/Open
    MCBillingsley_Thesis.pdf (4.344Mb)
    Downloads: 508
    Date
    2005-12-16
    Author
    Billingsley, Matthew C.
    Metadata
    Show full item record
    Abstract
    To realize supersonic combustion of hydrocarbons, an effective atomizer-igniter combination with the capabilities of fuel preheating, atomization, penetration, mixing, ignition and flameholding is desired. An original design concept incorporating these capabilities was built and tested at Virginia Tech, and was found to provide good penetration, effective atomization, and robust ignition and flameholding. Quiescent testing with kerosene and JP-7 provided initial performance data. The atomizer-injector design was then modified for insertion into a supersonic wind tunnel, and tested with kerosene in an unheated Mach 2.4 flow with typical freestream conditions of To = 280 K and Po = 360 kPa. Water injection was utilized in both cases for comparison and to analyze atomization behavior. In the quiescent environment, the regeneratively cooled plasma torch igniter was found to significantly increase electrode life while heating, atomizing, and igniting the liquid fuel. Jet breakup length was measured and characterized, and mean droplet size was estimated using an existing correlation. Several qualitative observations regarding quiescent combustion were made, including torch power effects and the process of flame formation. In the supersonic environment, the effect of fuel injection direction was analyzed. Best results were obtained when fuel was injected with a velocity component opposite to the direction of main tunnel flow. Repeatable ignition occurred in the supersonic boundary layer at the fuel stagnation location near the plasma torch plume. Direct, filtered, shadowgraph, and schlieren photographs, temperature measurements, and visible emission spectroscopy provided evidence of combustion and the details of the flame structure. The new atomizer-igniter design provided robust and reliable ignition and flameholding of liquid hydrocarbon fuels in an unheated supersonic flow at M=2.4, with no ramp, step, or other physical penetration into the flowpath.
    URI
    http://hdl.handle.net/10919/36331
    Collections
    • Masters Theses [19687]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us