Direct Force Measurement between Surfaces Coated with Hydrophobic Polymers in Aqueous Solutions and the Separation of Mixed Plastics by Flotation
Abstract
While water contact angle is the most widely used measure of the hydrophobicity of a solid, it does not give the information on the kinetics of flotation. Therefore, the forces acting between the surfaces coated with different hydrophobic polymers (or plastics) in water were measured using the Atomic Force Microscope (AFM). The results obtained with polystyrene, polymethylmethacryrate (PMMA), polypropylene (PP), and Teflon showed the existence of long-range attractive forces (or hydrophobic force) that cannot be explained by the classical DLVO theory. The surface force measurements were conducted in pure water and in solutions of surfactant (alkyltrimethylammonium chloride) and a salt (NaCl). In pure water, the attractive forces were much stronger than van der Waals force. In the presence of the surfactant and NaCl, the long-range attraction decreased with increasing concentration and the alkyl chain length.
A series of contact angle measurements were conducted to determine the hydrophobicity of polystyrene (PS), polyvinyl chlorite (PVC), and polymethylmethacrylate (PMMA) in the presence of different wetting agents (surfactants). The results show the possibility of separating plastics from each other by flotation, and a series of microflotation tests conducted on PS and PVC showed promising results.
Collections
- Masters Theses [19687]