Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On-Chip Isotropic Microchannels for Cooling Three Dimensional Microprocessors

    Thumbnail
    View/Open
    Renaghan_LE_T_2009.pdf (2.021Mb)
    Downloads: 201
    Date
    2009-12-04
    Author
    Renaghan, Liam Eamon
    Metadata
    Show full item record
    Abstract
    This thesis reports the fabrication of three dimensionally independent on-chip microchannels using a CMOS-compatible single mask deep reactive ion etching (DRIE) process for cooling 3D ICs. Three dimensionally independent microchannels are fabricated by utilizing the RIE lag effect. This allows complex microchannel configurations to be fabricated using a single mask and single silicon etch step. Furthermore, the microchannels are sealed in one step by low temperature oxide deposition. The micro-fin channels heat transfer characteristics are similar to previously published channel designs by being capable of removing 185 W/cm2 before the junction temperatures active elements exceed 85°C. To examine the heat transfer characteristics of this proposed on-chip cooler, different channel geometries were simulated using computational fluid dynamics. The channel designs were simulated using 20°C water at different flow rates to achieve a laminar flow regime with Reynolds numbers ranging from 200 to 500. The steady state simulations were performed using a heat flux of 100 W/cm2. Simulation results were verified using fabricated test chips. A micro-fin geometry showed to have the highest heat transfer capability and lowest simulated substrate temperatures. While operating with a Reynolds number of 400, a Nusselt number per input energy (Nu/Q) of 0.24 W-1 was achieved. The micro-fin geometry is also capable of cooling a substrate with a heat flux of 100W/cm2 to 45ºC with a Reynolds number of 525. These channels also have a lower thermal resistance compared to external heat sinks because there is no heat spreader or thermal interface material layer.
    URI
    http://hdl.handle.net/10919/36404
    Collections
    • Masters Theses [21902]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us