A computer implementation of the static and dynamic analysis of induced strain actuated beams

TR Number
Date
1993
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

A generalized solution technique has been designed and developed for the static and dynamic analysis of induced strain actuated beam structures. A PC-based, user-friendly, menu-driven software program DAISA (Dynamic Analysis of Induced Strain Actuated Beams) has been developed for the analysis of structural response due to induced strain actuation, with a highly user-friendly interface. Transfer matrices have been used to generalize the beam problem to accommodate different boundary conditions, loading conditions due to an arbitrary number of symmetric actuator patches on the beam structure, structural damping effects, and the effects of stiffening and mass loading due to the presence of the actuators. DAISA has been designed to perform static-response, free-vibration, steady-state harmonic-response, and frequency-response analyses describing the structural response to induced strain actuation. Various modeling techniques, including the Static, equivalent thermal expansion, and impedance approaches have been incorporated. DAISA has also been equipped to perform an electro-mechanical analysis of the beam-actuator system thereby providing adequate information about power consumption and system power requirements. The algorithm and software presented in this thesis will serve to achieve better design considerations for actuators employed in structural and vibration control.

Description
Keywords
Citation
Collections