• Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multiaxial fatigue damage model for random amplitude loading histories

    Thumbnail
    View/Open
    LD5655.V855_1992.J864.pdf (2.626Mb)
    Downloads: 42
    Date
    1992-12-15
    Author
    Juneja, Lokesh Kumar
    Metadata
    Show full item record
    Abstract
    In spite of many multiaxial fatigue life prediction methods proposed over decades of research, no universally accepted approach yet exists. A multiaxial fatigue damage model developed for approximately proportional random amplitude loading is proposed in this study. A normal strain based analysis incorporating the multiaxial state of stress is conducted along a critical orientation assuming a constant strain ratio. The dominant deformation direction is chosen to be the critical orientation which is selected with the help of a principal strain histogram generated from the given multiaxial loading history. The uniaxial cyclic stress-strain curve is modified for the biaxial state of stress present along the critical orientation for the plane stress conditions. Modified versions of Morrow's and of Smith, Watson, and Topper's (SWT) mean-stress models are used to incorporate mean stresses. A maximum shear strain based analysis is, in addition, conducted to check for the shear dominant fatigue crack growth possibility along the critical direction. The most damaging maximum shear strain is chosen after analyzing the in-plane and the two out-of-plane shear strains.

    The minimum of the two life values obtained from SWT model and the shear strain model is compared with the life estimated by the proposed model with the modified Morrow's mean stress model. The former is essentially the life predicted by Socie. The results of the proposed model, as reduced to the uniaxial case, are also compared with the experimental data obtained by conducting one-channel random amplitude loading history experiments.

    URI
    http://hdl.handle.net/10919/41522
    Collections
    • Masters Theses [17908]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us