Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    S-parameter modeling of two-port devices using a single, memoryless nonlinearity

    Thumbnail
    View/Open
    LD5655.V855_1992.D589.pdf (2.539Mb)
    Downloads: 29
    Date
    1992-12-05
    Author
    Ditz, Marc William Legori
    Metadata
    Show full item record
    Abstract
    It is proposed to represent a nonlinear two-port device by a scattering parameter (S-parameter) model containing a single nonlinearity. Furthermore, it is proposed that the nonlinearity be modeled as a memoryless nonlinear function. A bipolar junction transistor (BJT) operating in the active region is suggested as one application of this modeling approach. The validity of the model is demonstrated by the comparison of measured and model-predicted data for a microwave BJT. The proposed nonlinear model is represented by a linear three-port flowgraph having one of its ports terminated in a real-valued, nonlinear reflection. The model parameters are determined from measurements of device-under-test (DUT) transmission and reflection at various input drive levels. As an illustration of its utility, the model is applied to the design of an oscillator. The measured results of a constructed oscillator are provided. A presentation of a new form of calibration for microwave measurement systems precedes the nonlinear modeling discussion. The new calibration technique combines the transmission line approach to calibration with a load-pull process common to nonlinear device measurements. A two-port, one-way measurement process obviates the need for DUT reversal. The calibrated measurement of input reflection, transmission, and load reflection is discussed. In addition, the procedure for determining the small-signal S parameters of the DUT is given.
    URI
    http://hdl.handle.net/10919/41722
    Collections
    • Masters Theses [20802]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us