Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Construction and characterization of removable and reusable piezoelectric actuators

    Thumbnail
    View/Open
    LD5655.V855_1994.M3475.pdf (3.618Mb)
    Downloads: 42
    Date
    1994
    Author
    McCray, Thomas Wade
    Metadata
    Show full item record
    Abstract
    Piezoelectric patch-type actuators are being considered for use in acoustic control and vibration control of complex mechanical structures such as aircraft fuselages and automobile interiors. For complex structures, it is often difficult to predict the best location of actuator-structure interaction. Currently, piezoelectric patch-type actuators are bonded permanently to the host structure using a technique that requires surface preparation. This technique is not well suited for actuator performance testing and model verification since attaching the actuator is time-consuming, removing the actuator is difficult, and the actuator is destroyed when it is removed. We present three alternate techniques for bonding flat piezoelectric patch-type actuators to structures. These techniques allow the actuator to be attached quickly, removed easily, and reused. The alternate techniques and a permanent bonding technique are used to attach actuators to a clamped-free beam. For each attachment technique, we obtain the frequency response functions, actuator authority levels, and damping ratios. We also obtain the degradation of the actuator authority and damping ratio as the actuator is reused. For each attachment technique, we compare the measured performance to the performance predicted from a pin-force model of that actuator attachment. The attachment techniques that allowed us to make removable, reusable piezoelectric actuators were shown to provide structural actuation very similar to actuation provided by permanently attached piezoelectric actuators. A small but statistically significant change in authority occurred as a result of removing the actuator. The confidence intervals of actuator authority increased in frequency regions of antiresonance and closely spaced modes. The pin-force model did not provide an accurate analysis method for predicting actuator authority.
    URI
    http://hdl.handle.net/10919/43442
    Collections
    • Masters Theses [21556]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us