Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Potential flow solution and incompressible boundary layer for a two-dimensional cascade

    Thumbnail
    View/Open
    LD5655.V855_1974.B79.pdf (4.368Mb)
    Downloads: 229
    Date
    1974-10-31
    Author
    Bryner, Hans Eugen
    Metadata
    Show full item record
    Abstract
    A blade-to-blade computer program, using the method of finite differences has been written to calculate the velocity distributions on the rotor blade of an axial-flow compressor. The shape of the blade has been approximated in two different ways employing a rather elaborate method and one whose primary goal was simplicity. The ensuing velocity distributions were compared and can be judged to be satisfactory in that they follow the expectations and show a reasonable behavior, even close to the leading and trailing stagnation point. The latter fact represents an improvement to results obtained from a previous work [ref. 3], however the calculations still need to be confirmed by the experiment. In the second part of this thesis, following a recommendation of reference 3, the blade boundary layer effects have been calculated from the velocity distributions of the first part. Considering certain assumptions, these results also may be judged as satisfactory and the rather important conclusion may be drawn that turbulent separation, if it occurs at all, takes place close to the rear stagnation point of the blade for the applied range of upstream velocities. Another conclusion may be drawn from the displacement thickness distribution in that the flow values would not affect greatly the potential flow calculation and hence an iterative procedure between the potential flow field and the blade boundary layer should converge rapidly. The results from the second part also require a confirmation by the experiment.
    URI
    http://hdl.handle.net/10919/43722
    Collections
    • Masters Theses [20953]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us