Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantifying Dynamic Stability of Musculoskeletal Systems using Lyapunov Exponents

    Thumbnail
    View/Open
    ScottEnglandETD1.pdf (3.687Mb)
    Downloads: 364
    Date
    2005-09-13
    Author
    England, Scott Alan
    Metadata
    Show full item record
    Abstract
    Increased attention has been paid in recent years to the means in which the body maintains stability and the subtleties of the neurocontroller. Variability of kinematic data has been used as a measure of stability but these analyses are not appropriate for quantifying stability of dynamic systems. Response of biological control systems depend on both temporal and spatial inputs, so means of quantifying stability should account for both. These studies utilized tools developed for the analysis of deterministic chaos to quantify local dynamic stability of musculoskeletal systems. The initial study aimed to answer the oft assumed conjecture that reduced gait speeds in people with neuromuscular impairments lead to improved stability. Healthy subjects walked on a motorized treadmill at an array of speeds ranging from slow to fast while kinematic joint angle data were recorded. Significant (p < 0.001) trends showed that stability monotonically decreased with increasing walking speeds. A second study was performed to investigate dynamic stability of the trunk. Healthy subjects went through a variety of motions exhibiting either symmetric flexion in the sagittal plane or asymmetric flexion including twisting at both low and high cycle frequencies. Faster cycle frequencies led to significantly (p<0.001) greater instability than slower frequencies. Motions that were hybrids of flexion and rotation were significantly (p<0.001) more stable than motions of pure rotation or flexion. Finding means of increasing dynamic stability may provide great understanding of the neurocontroller as well as decrease instances of injury related to repetitive tasks. Future studies should look in greater detail at the relationships between dynamic instability and injury and between local dynamic stability and global dynamic stability.
    URI
    http://hdl.handle.net/10919/44784
    Collections
    • Masters Theses [21549]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us