Unsupervised Event Extraction from News and Twitter

View/ Open
Downloads: 237
Downloads: 685
Downloads: 184
Downloads: 159
Downloads: 209
Downloads: 317
Downloads: 595
Downloads: 1240
Date
2014-05-11Author
Xuan, Zhang
Wei, Huang
Ji, Wang
Tianyu, Geng
Metadata
Show full item recordAbstract
Living in the age of big data, we are facing massive information every day, especially that from the mainstream news and the social networks. Due to its gigantic volume, one may get frustrated when trying to identify the key information which really matters. Thus, how to summarize the key information from the enormous amount of news and tweets becomes essential. Addressing this problem, this project explores the approaches to extract key events from newswires and Twitter data in an unsupervised manner, where Topic Modeling and Named Entity Recognition have been applied. Various methods have been tried regarding the different traits of news and tweets. The relevance between the news events and the corresponding Twitter events is studied as well. Tools have been developed to implement and evaluate these methods. Our experiments show that these tools can effectively extract key events from the news and tweets data sets. The tools, documents and data sets can be used for educational purposes and as a part of the IDEAL project of Virginia Tech.