Finite Element Simulations of Two Dimensional Peridynamic Models

Files
TR Number
Date
2014-05-27
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

This thesis explores the science of solid mechanics via the theory of peridynamics. Peridynamics has several key advantages over the classical theory of elasticity. The most notable of which is the ease with which fractures in the the material are handled. The goal here is to study the two theories and how they relate for problems in which the classical method is known to work well. While it is known that state-based peridynamic models agree with classical elasticity as the horizon radius vanishes, similar results for bond-based models have yet to be developed. In this study, we use numerical simulations to investigate the behavior of bond-based peridynamic models under this limit for a number of cases where analytic solutions of the classical elasticity problem are known. To carry out this study, the integral-based peridynamic model is solved using the finite element method in two dimensions and compared against solutions using the classical approach.

Description
Keywords
Peridynamics, Elasticity, Solid Mechanics
Citation
Collections