Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry

Files
TR Number
Date
2013-01-23
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The air transportation market has been growing steadily for the past three decades since the airline deregulation in 1978. With competition also becoming more intense, airline companies have been trying to enhance their market shares and profit margins by composing favorable flight schedules and by efficiently allocating their resources of aircraft and crews so as to reduce operational costs. In practice, this is achieved based on demand forecasts and resource availabilities through a structured airline scheduling process that is comprised of four decision stages: schedule planning, fleet assignment, aircraft routing, and crew scheduling. The outputs of this process are flight schedules along with associated assignments of aircraft and crews that maximize the total expected profit.

Traditionally, airlines deal with these four operational scheduling stages in a sequential manner. However, there exist obvious interdependencies among these stages so that restrictive solutions from preceding stages are likely to limit the scope of decisions for succeeding stages, thus leading to suboptimal results and even infeasibilities. To overcome this drawback, we first study the aircraft routing problem, and develop some novel modeling foundations based on which we construct and analyze an integrated model that incorporates fleet assignment, aircraft routing, and crew pairing within a single framework.

Given a set of flights to be covered by a specific fleet type, the aircraft routing problem (ARP) determines a flight sequence for each individual aircraft in this fleet, while incorporating specific considerations of minimum turn-time and maintenance checks, as well as restrictions on the total accumulated flying time, the total number of takeoffs, and the total number of days between two consecutive maintenance operations. This stage is significant to airline companies as it directly assigns routes and maintenance breaks for each aircraft in service. Most approaches for solving this problem adopt set partitioning formulations that include exponentially many variables, thus requiring the design of specialized column generation or branch-and-price algorithms. In this dissertation, however, we present a novel compact polynomially sized representation for the ARP, which is then linearized and lifted using the Reformulation-Linearization Technique (RLT). The resulting formulation remains polynomial in size, and we show that it can be solved very efficiently by commercial software without complicated algorithmic implementations. Our numerical experiments using real data obtained from United Airlines demonstrate significant savings in computational effort; for example, for a daily network involving 344 flights, our approach required only about 10 CPU seconds for deriving an optimal solution.

We next extend Model ARP to incorporate its preceding and succeeding decision stages, i.e., fleet assignment and crew pairing, within an integrated framework. We formulate a suitable representation for the integrated fleeting, routing, and crew pairing problem (FRC), which accommodates a set of fleet types in a compact manner similar to that used for constructing the aforementioned aircraft routing model, and we generate eligible crew pairings on-the-fly within a set partitioning framework. Furthermore, to better represent industrial practice, we incorporate itinerary-based passenger demands for different fare-classes. The large size of the resulting model obviates a direct solution using off-the-shelf software; hence, we design a solution approach based on Benders decomposition and column generation using several acceleration techniques along with a branch-and-price heuristic for effectively deriving a solution to this model. In order to demonstrate the efficacy of the proposed model and solution approach and to provide insights for the airline industry, we generated several test instances using historical data obtained from United Airlines. Computational results reveal that the massively-sized integrated model can be effectively solved in reasonable times ranging from several minutes to about ten hours, depending on the size and structure of the instance. Moreover, our benchmark results demonstrate an average of 2.73% improvement in total profit (which translates to about 43 million dollars per year) over a partially integrated approach that combines the fleeting and routing decisions, but solves the crew pairing problem sequentially. This improvement is observed to accrue due to the fact that the fully integrated model effectively explores alternative fleet assignment decisions that better utilize available resources and yield significantly lower crew costs.

Description
Keywords
Airline operations research, integrated airline scheduling, compact formulation, fleet assignment, aircraft routing, crew pairing, itinerary-based passenger mix, Reformulation-Linearization Technique (RLT), Benders decomposition, subgradient optimization, branch-and-price, large-scale optimization
Citation