Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation Into Use of Piezoelectric Sensors in a Wheeled Robot Tire For Surface Characterization

    Thumbnail
    View/Open
    Armstrong_EG_T_2013.pdf (19.41Mb)
    Downloads: 1420
    Date
    2013-06-25
    Author
    Armstrong, Elizabeth Gene
    Metadata
    Show full item record
    Abstract
    A differential steered, 13.6 kg robot was developed as an intelligent tire testing system and was used to investigate the potential of using piezoelectric film sensors in small tube-type pneumatic tires to characterize tire-ground interaction.
    One focus of recent research in the tire industry has been on instrumenting tires with sensors to monitor the tire, vehicle, or external environment. On small robots, tire sensors that measure the forces and deflections in the contact patch could be used to improve energy efficiency and/or mobility during a mission.
    The robot was assembled from a SuperDroid Robots kit and instrumented with low-cost piezoelectric film sensors from Measurement Specialties between the inner tube and the tire.  An unlaminated and a laminated sensor were placed circumferentially along the tread and an unlaminated sensor was placed along the sidewall.  A slip ring transferred the signals from the tire to the robot. There, the signal conditioning circuit extended the time constant of the sensors and filtered electromagnetic interference.  The robot was tested with a controlled power sequence carried out on polished cement, ice, and sand at three power levels, two payload levels, and with two tire sizes.
    The results suggest that the sensors were capable of detecting normal pressure, deflection, and/or longitudinal strain.  Added payload increased the amplitude of the signals for all sensors.  On the smaller tires, sensors generally recorded a smaller, wider signal on sand compared to cement, indicating the potential to detect contact patch pressure and length.  The signals recorded by the unlaminated sensor along the tread of the smaller tire were lower on ice compared to cement, indicating possible sensitivity to tractive force.  Results were less consistent for the larger tires, possibly due to the large tread pattern.
    URI
    http://hdl.handle.net/10919/51146
    Collections
    • Masters Theses [19408]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us