Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microbial fuel cells coupled with open pond for wastewater treatment: is it viable?

    Thumbnail
    View/Open
    Xu_B_T_2015.pdf (1.640Mb)
    Downloads: 4634
    Supporting documents (271.2Kb)
    Downloads: 75
    Date
    2015-06-21
    Author
    Xu, Bojun
    Metadata
    Show full item record
    Abstract
    Sediment microbial fuel cell (SMFC) is a special type of microbial fuel cells that can be deployed in a natural water body for energy production and contaminant removal. This MS project aims to explore whether it will be viable to apply SMFCs for wastewater treatment. Experimental SMFCs were studied in several configurations and operational modes for organic removal, nitrate reduction, and energy recovery. When treating an artificial secondary effluent for nitrate removal, the SMFC could remove 44% of the nitrate, higher than that without electricity generation. The enhanced removal was attributed to the supply of electrons to nitrate reduction in the aqueous phase through oxidizing the organics in the sediment. The lack of a proper separator between the anode and the cathode led to the failure of the SMFC when treating an artificial raw wastewater. Ion exchange membranes were incorporated into the MFCs that were installed in a lab-scale open water pond (150 L in volume). Such a system achieved 100% COD removal and more than 75% removal of ammonium nitrogen. However, denitrification remained as a challenge because of a lack of anoxic zone. To reduce the cost of the cathode catalysts, a polymer-based carbon cloth was investigated and exhibited better performance than bare carbon cloth. The results of this MS project have demonstrated that SMFCs in the absence of a proper separator cannot be applied for wastewater treatment. A membrane-based MFC system integrated with open pond may function as a wastewater treatment system, though nitrogen removal efficiency must be improved.
    URI
    http://hdl.handle.net/10919/52987
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us