Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Virtual Planar Motion Mechanism Testing of 8:1 Spheroids

    Thumbnail
    View/Open
    Ball_EH_T_2015.pdf (6.062Mb)
    Downloads: 1493
    Date
    2015-06-23
    Author
    Ball, Eddie H.
    Metadata
    Show full item record
    Abstract
    PMM testing is a method used to identify the added mass and damping coefficients used in the equations of motion of a vehicle by attempting to decouple the forces on a body due to velocity and acceleration as a result of creating "hydrodynamically pure" velocities and accelerations. This makes it possible to use quasi-steady state models with terms independent of both velocity and acceleration. This paper explores the ability of simple damping models (solely a function of velocity) with added mass terms (solely a function of acceleration) to simulate the heave force of an 8:1 ellipsoid undergoing PMM testing. In order to help explain the complexity of the flow during PMM tests, a flow analysis of the 8:1 spheroid is provided, which discusses the flow topology of spheroids at steady angle of attack, validity of quasi-steady models, and some other basic flow features seen in PMM testing. In this paper, a simple proportionality relationship between a linear and quadratic damping model is revealed. It is also shown that variations in the heave force response during PMM tests are most heavily influenced by viscous effects, especially cross flow separation. Finally, it is shown where these models break down, owing to the increasing nonlinearity of the flow induced by the harsher motions of large amplitude and/or large frequency tests.
    URI
    http://hdl.handle.net/10919/53515
    Collections
    • Masters Theses [19662]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us