Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DataSnap: Enabling Domain Experts and Introductory Programmers to Process Big Data in a Block-Based Programming Language

    Thumbnail
    View/Open
    Hellmann_JD_T_2015.pdf (4.513Mb)
    Downloads: 3857
    Date
    2015-07-10
    Author
    Hellmann, Jonathon David
    Metadata
    Show full item record
    Abstract
    Block-based programming languages were originally designed for educational purposes. Due to their low requirements for a user's programming capability, such languages have great potential to serve both introductory programmers in educational settings as well as domain experts as a data processing tool. However, the current design of block-based languages fails to address critical factors for these two audiences: 1) domain experts do not have the ability to perform crucial steps: import data sources, perform efficient data processing, and visualize results; 2) the focus of online assignments towards introductory programmers on entertainment (e.g. games, animation) fails to convince students that computer science is important, relevant, and related to their day-to-day experiences. In this thesis, we present the design and implementation of DataSnap, which is a block-based programming language extended from Snap!. Our work focuses on enhancing the state of the art in block-based programming languages for our two target audiences: domain experts and introductory programmers. Specifically, in this thesis we: 1) provide easy-to-use interfaces for big data import, processing, and visualization methods for domain experts; 2) integrate relevant social media, geographic, and business-related data sets into online educational platforms for introductory programmers and enable teachers to develop their own real-time and big-data access blocks; and 3) present DataSnap in the Open edX online courseware platform along with customized problem definition and a dynamic analysis grading system. Stemming from our research contributions, our work encourages the further development and utilization of block-based languages towards a broader audience range.
    URI
    http://hdl.handle.net/10919/54544
    Collections
    • Masters Theses [22193]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us