• Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces

    Thumbnail
    View/Open
    Ailsworth_JW_T_2016.pdf (5.168Mb)
    Downloads: 1061
    Supporting documents (3.133Mb)
    Downloads: 87
    Date
    2016-06-20
    Author
    Ailsworth Jr., James William
    Metadata
    Show full item record
    Abstract
    Brain-computer interfaces are an emerging technology that could provide channels for communication and control to severely disabled people suffering from locked-in syndrome. It has been found that motor imagery can be detected and classified from EEG signals. The motivation of the present work was to compare several algorithms for motor imagery classification in EEG signals as well as to test several novel algorithms. The algorithms tested included the popular method of common spatial patterns (CSP) spatial filtering followed by linear discriminant analysis (LDA) classification of log-variance features (CSP+LDA). A second set of algorithms used classification based on concepts from Riemannian geometry. The basic idea of these methods is that sample spatial covariance matrices (SCMs) of EEG epochs belong to the Riemannian manifold of symmetric positive-definite (SPD) matrices and that the tangent space at any SPD matrix on the manifold is a finite-dimensional Euclidean space. Riemannian classification methods tested included minimum distance to Riemannian mean (MDRM), tangent space LDA (TSLDA), and Fisher geodesic filtering followed by MDRM classification (FGDA). The novel algorithms aimed to combine the CSP method with the Riemannian geometry methods. CSP spatial filtering was performed prior to sample SCM calculation and subsequent classification using Riemannian methods. The novel algorithms were found to improve classification accuracy as well as reduce the computational costs of Riemannian classification methods for binary, synchronous classification on BCI competition IV dataset 2a.
    URI
    http://hdl.handle.net/10919/71371
    Collections
    • Masters Theses [17888]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us