Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanical response of a self-avoiding membrane: fold collisions and the birth of conical singularities.

    Thumbnail
    View/Open
    Publisher's Version (982.0Kb)
    Downloads: 161
    Date
    2011-03
    Author
    Mellado, P.
    Cheng, S.
    Concha, A.
    Metadata
    Show full item record
    Abstract
    An elastic membrane that is forced to reside in a container smaller than its natural size will deform and upon further volume reduction eventually crumple. The crumpled state is characterized by the localization of energy in a complex network of highly deformed crescent-like regions joined by line ridges. In this article we study through a combination of experiments, numerical simulations, and analytic approaches the emergence of localized regions of high stretching when a self-avoiding membrane is subject to a severe geometrical constraint. Based on our experimental observations and numerical results we suggest that at moderate packing fraction interlayer interactions produce a response equivalent to that of a thicker membrane that has the shape of the deformed one. We find that new conical dislocations, coined satellite d-cones, appear as the deformed membrane further compactifies. When these satellite d-cones are born, a substantial relaxation of the mechanical response of the membrane is observed. Evidence is found that friction plays a key role in stabilizing the folded structures.
    URI
    http://hdl.handle.net/10919/75161
    Collections
    • All Faculty Deposits [2306]
    • Scholarly Works, Department of Physics [811]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us