Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Measuring and Modeling On-chip Interconnect Power on Real Hardware

    Thumbnail
    View/Open
    adhinarayanan-interconnect-iiswc16.pdf (1.436Mb)
    Downloads: 374
    Date
    2016-09-26
    Author
    Adhinarayanan, Vignesh
    Paul, Indrani
    Greathouse, Joseph L.
    Huang, Wei
    Pattnaik, Ashutosh
    Feng, Wu-chun
    Metadata
    Show full item record
    Abstract
    On-chip data movement is a major source of power consumption in modern processors, and future technology nodes will exacerbate this problem. Properly understanding the power that applications expend moving data is vital for inventing mitigation strategies. Previous studies combined data movement energy, which is required to move information across the chip, with data access energy, which is used to read or write on- chip memories. This combination can hide the severity of the problem, as memories and interconnects will scale differently to future technology nodes. Thus, increasing the fidelity of our energy measurements is of paramount concern. We propose to use physical data movement distance as a mechanism for separating movement energy from access energy. We then use this mechanism to design microbenchmarks to ascertain data movement energy on a real modern processor. Using these microbenchmarks, we study the following parameters that affect interconnect power: (i) distance, (ii) interconnect bandwidth, (iii) toggle rate, and (iv) voltage and frequency. We conduct our study on an AMD GPU built in 28nm technology and validate our results against industrial estimates for energy/bit/millimeter. We then construct an empirical model based on our characterization and use it to evaluate the interconnect power of 22 real-world applications. We show that up to 14% of the dynamic power in some applications can be consumed by the interconnect and present a range of mitigation strategies.
    URI
    http://hdl.handle.net/10919/76746
    Collections
    • All Faculty Deposits [3559]
    • Scholarly Works, Department of Computer Science [338]
    • Scholarly Works, Electrical and Computer Engineering [676]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us