Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of Wine Grape Cultivar and Cluster Developmental Stage Susceptibility to Grape Ripe Rot Caused by Two Fungal Species Complexes, Colletotrichum gloeosporioides, and C. acutatum, and the Evaluation of Potential Controls

    Thumbnail
    View/Open
    etd-04282016-113249_Oliver_CL_T_2016.pdf (2.558Mb)
    Downloads: 724
    Date
    2016-04-15
    Author
    Oliver, Charlotte
    Metadata
    Show full item record
    Abstract
    Ripe rot of grape is caused by two fungal species complexes: Colletotrichum gloeosporioides and C. acutatum, both of which cause disease on a variety of crops, such as strawberry and apple. To investigate effect of cultivar and cluster developmental stage on the development of ripe rot, controlled environment and field studies were conducted during 2013-2014. We have identified that a certain level of infection could can take place on most cultivars tested from bloom to the near harvest. In most of the cases, significant cultivar and cluster developmental stage interaction effects were observed (P < 0.05) for the development of disease symptoms in both studies. In general, susceptible cultivar (Cabernet Franc, Cabernet sauvignon, and Chardonnay) demonstrated fluctuations of disease susceptibility among cluster development stages, while resistant cultivars (Merlot) showed consistently low level of the disease throughout the season. To investigate the effect of eleven ten modes of action for control of C. gloeosporioides and C. acutatum, two methods, alamarBlue® assay and inoculation on fungicide-treated detached fruits, were used. Protective fungicides (mancozeb, captan, and copper) as well as some of newer formulations such as azoxystrobin and tetraconazole were identified as excellent products against ripe rot of grape. Four additional materials were identified as good potential candidates to investigate further. The information gained from these studies will help growers to determine the critical period for ripe rot management and chemicals to be applied for management. With better control of cluster rot pathogens, Virginia growers can experience an increase in yield and wine quality.
    URI
    http://hdl.handle.net/10919/77504
    Collections
    • Masters Theses [21552]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us