Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Method for Analysis and Incorporation of Rotorcraft Fluctuation in Synthesized Flyover Noise

    Thumbnail
    View/Open
    Pera_NM_T_2017.pdf (4.395Mb)
    Downloads: 338
    Supporting documents (38.46Mb)
    Downloads: 16
    Date
    2017-06-13
    Author
    Pera, Nicholas Matthew
    Metadata
    Show full item record
    Abstract
    Rotorcraft flyover noise has long been a field of study for researchers. This is because for many people, the sounds produced by these vehicles are found to be extremely annoying. The focus of this thesis is to recreate the time-varying rotorcraft noise at the source for a single emission angle. Then, through interpolation between emission angles, produce a simulated flyover at the source that can then be propagated to a receiver. This will allow for the creation of a simulated flyover without the need of having to use a physical aircraft, or pre-existing data from some type of data collection means, such as a microphone array. The current methods are limited to a predefined length of data in order to synthesize signals. It has been documented that synthesizing flyover noise, from direct use of physical flyover recordings through an empirical approach, yields a high fidelity signal, as long as both unmodulated and modulated components are present. In order to extend these signals indefinitely, models for the amplitude and phase modulation must be developed. A band-limited random process will be explored for both the amplitude and phase modulations. An overlap-add technique, as well as a randomization technique and a modified phase modulation signal, defined as the "residual", will also be attempted in order to model the phase modulation. The results from this work have successfully found a means in which to produce a viable model of the amplitude modulation. Further investigation is still required in order to produce a model of the phase modulation which results in a high-fidelity model that can be extended indefinitely.
    URI
    http://hdl.handle.net/10919/78188
    Collections
    • Masters Theses [22187]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us