Bio-Inspired Trailing Edge Noise Control: Acoustic and Flow Measurements

TR Number
Date
2017-05-09
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Trailing edge noise control is an important problem associated mainly with wind turbines. As turbulence in the air flows over a wind turbine blade, it impacts the trailing edge and scatters, producing noise. Traditional methods of noise control involve modifying the physical trailing edge, or the scattering efficiency. Recently, inspired by the downy covering of owl feathers, researchers developed treatments that can be applied to the trailing edge to significantly reduce trailing edge noise. It was hypothesized that the noise reduction was due to manipulating the incoming turbulence, rather than the physical trailing edge itself, representing a new method of noise control. However, only acoustic measurements were reported, meaning the associated flow physics were still unknown. This thesis describes a comprehensive wall jet experiment to measure the flow effects near the bio-inspired treatments, termed “finlets” and “rails,” and relate those flow effects to the noise reduction. This was done using far-field microphones, a single hot-wire probe, and surface pressure fluctuation microphones. The far-field noise results showed that each treatment successfully reduced the noise, by up to 7 dB in some cases. The surface pressure measurements showed that the spanwise coherence was slightly reduced when the treatments were applied to the trailing edge. The velocity measurements clearly established the presence of a shear layer near the top of the treatments. As a whole, the dataset led to the shear-sheltering hypothesis: the bio-inspired treatments are effective based on reducing the spanwise pressure correlation and by sheltering the trailing edge from turbulent structures with the shear layer they create.

Description
Keywords
Aeroacoustics, Trailing Edge Noise, Noise Control, Bio-Inspired, Shear Sheltering, Turbulent Wall Jet, Hot-Wire Anemometry, Mixing Layer
Citation
Collections