Bioinspired Tracking Control of High Speed Nonholonomic Ground Vehicles
Abstract
The behavior of nature’s predators is considered for designing a high speed tracking controller for nonholonomic vehicles, whose dynamicsare represented using a unicycle model. To ensure that the vehicle behaves intuitively and mimics the biologically inspiredpredator-prey interaction, saturation constraints based on Ackermann steering kinematics are added. A new strategy for mapping commandsback into a viable envelope is introduced, and the restrictions are accounted for using Lyapunov stability criteria. Followingverification of the saturation constraints, the proposed algorithm was implemented on a testing platform. Stable trajectories of up to 9 m/swere achieved. The results presented show that the algorithm demonstrates significant promise in high speed trajectory tracking withobstacle avoidance.