Photorespiration and Rate Synchronization in a Phototroph-Heterotroph Microbial Consortium

TR Number
Date
2017-03-02
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract

The process of oxygenic photosynthesis is robust and ubiquitous, relying centrally on input of light, carbon dioxide, and water, which in many environments are all abundantly available, and from which are produced, principally, oxygen and reduced organic carbon. However, photosynthetic machinery can be conflicted by the simultaneous presence of carbon dioxide and oxygen through a process sometimes called photorespiration. We present here a model of phototrophy, including competition for RuBisCO binding sites between oxygen and carbon dioxide, in a chemostat-based microbial population. The model connects to the idea of metabolic pathways to track carbon and degree of reduction through the system. We find decomposition of kinetics into elementary flux modes a mathematically natural way to study synchronization of mismatched rates of photon input and chemostat turnover. In the single species case, though total biomass is reduced by photorespiration, protection from excess light exposures and its consequences (oxidative and redox stress) may result. We also find the possibility that a consortium of phototrophs with heterotrophs can recycle photorespiration byproduct into increased biomass at the cost of increase in oxidative product (here, oxygen).

Description
Keywords
photosynthesis, photorespiration, chemostat model, phototroph-heterotroph consortium
Citation
El Moustaid, F.; Carlson, R.P.; Villa, F.; Klapper, I. Photorespiration and Rate Synchronization in a Phototroph-Heterotroph Microbial Consortium. Processes 2017, 5, 11.