Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Query Expansion Study for Clinical Decision Support

    Thumbnail
    View/Open
    Zhuang_W_T_2018.pdf (903.5Kb)
    Downloads: 322
    Date
    2018-02-12
    Author
    Zhuang, Wenjie
    Metadata
    Show full item record
    Abstract
    Information retrieval is widely used for retrieving relevant information among a variety of data, such as text documents, images, audio and videos. Since the first medical batch retrieval system was developed in mid 1960s, significant research efforts have focused on applying information retrieval to medical data. However, despite the vast developments in medical information retrieval and accompanying technologies, the actual promise of this area remains unfulfilled due to properties of medical data and the huge volume of medical literature. Specifically, the recall and precision of the selected dataset from the TREC clinical decision support track are low. The overriding objective of this thesis is to improve the performance of information retrieval techniques applied to biomedical text documents. We have focused on improving recall and precision among the top retrieved results. To that end, we have removed redundant words, and then expanded queries by adding MeSH terms in TREC CDS topics. We have also used other external data sources and domain knowledge to implement the expansion. In addition, we have also considered using the doc2vec model to optimize retrieval. Finally, we have applied learning to rank which sorts documents based on relevance and put relevant documents in front of irrelevant documents, so as to return the relevant retrieved data on the top. We have discovered that queries, expanded with external data sources and domain knowledge, perform better than applying the TREC topic information directly.
    URI
    http://hdl.handle.net/10919/82068
    Collections
    • Masters Theses [20805]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us