The Role of Fasting Acylcarnitines in Metabolic Flexibility from Short Term High Fat Feeding
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Metabolic flexibility plays a significant role in energy homeostasis by regulating fuel selection in correspondence to energy demand. Obese and type II diabetic populations have displayed a hindered ability to properly transition from fat oxidation while in a fasted state to carbohydrate oxidation once fed, leading to a buildup of mitochondrial metabolites such as acylcarnitines. Carnitine, essential for fatty acyl-CoA transport through the inner and outer mitochondrial membranes, can be an indicator of mitochondrial distress as elevated levels tend to spill over into plasma suggesting a disruption in oxidation. The current study was designed to examine the effect of short term, high fat feeding on plasma acylcarnitine species diversity and levels and if acylcarnitines are associated with metabolic flexibility. 13 healthy, non-obese, sedentary males, aged 18-40 years participated in this study. Following a 12-hour overnight fast a biopsy was taken from the quadricep before and 4 hours after a high fat meal. Blood draws were obtained pre-biopsy while fasted and every hour for 4 hours post high fat meal consumption. Acylcarnitines from plasma were converted to their butyl esters and analyzed by electrospray ionization tandem mass spectrometry (MS/MS). Changes were observed in acetylcarntine (P=0.0125), glucose oxidation (P=0.0295), C16:1/C16:0 desaturation index (P= 0.0397), and C18:1/C18:0 desaturation index (P=0.0012). We did not find that individual changes in flexibility correlated with circulating acylcarnitine measurements in a fasted state