Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surface Based Decoding of Fusiform Face Area Reveals Relationship Between SNR and Accuracy in Support Vector Regression

    Thumbnail
    View/Open
    Eltahir_AM_T_2018.pdf (1.369Mb)
    Downloads: 70
    Date
    2018-05-24
    Author
    Eltahir, Amnah
    Metadata
    Show full item record
    Abstract
    The objective of this study was to expand on a method previously established in the lab for predicting subcortical structures using functional magnetic resonance imaging (fMRI) data restricted to the cortical surface. Our goal is to enhance the utility of low cost, portable imaging modalities, such as functional near infrared spectroscopy (fNIRS), which is limited in signal penetration depth. Previous work in the lab successfully employed functional connectivity to predict ten resting state networks and six anatomically de fined structures from the outer 10 mm layer of cortex using resting state fMRI data. The novelty of this study was two-fold: we chose to predict the functionally de fined region fusiform face area (FFA), and we utilized the functional connectivity of both resting state and task activation. Right FFA was identi ed for 27 subjects using a general linear model of a functional localizer tasks, and the average time series were extracted from right FFA and used as training and testing labels in support vector regression (SVR) models. Both resting state and task data decoded activity in right FFA above chance, both within and between run types. Our method is not speci c to resting state, potentially broadening the scope of research questions depth-limited techniques can address. We observed a similarity in our accuracy cross-validation to previous work in the lab. We characterized this relationship between prediction accuracy and spatial signal-to-noise (SNR). We found that this relationship varied between resting state and task, as well as the functionality of features included in SVR modeling.
    General Audience Abstract
    We used functional magnetic resonance imaging (fMRI) to predict activity in a deep brain region based on activity along the brain surface. This would increase the type of brain function a person could study using alternative methods that are less costly and easier to use, but can only detect signals along the surface. We were able to use this method to predict the fusiform face are, a region in the brain that responds more strongly to face images than other types of images. We also found a relationship between the quality of spatial information in the brain and the accuracy of predictions. This relationship differed depending on the types of brain regions were used to build the models, as well as whether the subjects were performing a task or rest scan.
    URI
    http://hdl.handle.net/10919/83385
    Collections
    • Masters Theses [19662]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us