Centrifuge-aided Micromolding and Sintering of Micron- and Submicron-sized Ceramic Features

Files

TR Number

Date

2018-01-25

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Microfabrication of ceramic features has become a critical issue in realizing the miniaturization of devices. Micromolding and sintering play critical roles in fabricating micron- and submicron-sized ceramic features using nanoparticles.

Developed from soft lithography, replica molding has been proven a good method to prepare micron- and submicron-sized features. However, the fidelity of the features can be compromised by incomplete feature cavity filling and feature shrinkage during the forming process. In this study, centrifuge-aided micromolding is developed to prepare micron- and submicron-sized ZnO features. By introducing a centrifugal force, the shear-thinning behavior of the suspensions is utilized, and the cavity filling process and the diffusion of trapped air out of the features are accelerated. The drying shrinkage is decreased by increasing the density of the wet nanoparticle packing from the centrifugal process. The centrifugal force improves the fidelity of all the designed features. ZnO ridges from 0.4 μm to 2 μm size and rods of 1.6 μm size are prepared successfully. The wide applicability of this strategy has been demonstrated by preparing ZrO2 features via the same method.

Sintering process has a significant influence on the morphology and microstructural evolution of micron-sized ceramic features. When ceramic features decrease to much smaller sizes, such as in the micron range, the dominating sintering mechanism(s) can be different from those of the bulk at large scales. However, limited effort has been devoted to understanding the sintering behaviors. In this study, the as-prepared micron-sized ZnO ridges and rods were sintered at 950oC for different time in air atmosphere. The sintering process destructs the ZnO features via abnormal grain growth and surface roughening. Destruction prediction of features using sintering time is established based on grain growth. Feature surface roughening is further analyzed with respect to thermodynamic fundamentals.

Because of the evaporation tendency during zinc oxide sintering, sintering atmosphere has a significant influence on the sintering behavior and feature fidelity. In this study, micron-sized ZnO ridge features were sintered under air and argon atmospheres. Ridge size, line edge roughness, and grain size were characterized. Quantitative calculation of sintering behaviors was performed in order to obtain fundamental understating of the micron-sized ZnO feature sintering. It is found that oxygen partial pressure is the deciding factor for the ridge feature evolution. ZnO evaporation and defects diffusion are responsible for the ZnO bulk and ridge sintering behavior differences.

Description

Keywords

Centrifuge-aided Micromolding, Patterning, Ceramic Features, Sintering, Feature Destruction, Atmosphere Sintering, Zinc Oxide

Citation

Collections