Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamics of a Small Autonomous Underwater Vehicle That Tows a Large Payload

    Thumbnail
    View/Open
    Kepler_ME_T_2018.pdf (1.997Mb)
    Downloads: 889
    Date
    2018-08-24
    Author
    Kepler Jr, Michael Eugene
    Metadata
    Show full item record
    Abstract
    This thesis presents the derivation of the dynamic model of an autonomous underwater vehicle that tows a large payload. Our analysis is motivated by the fact that the payload is so large that it cannot be modeled by simply appending its dynamics to the dynamics of the autonomous underwater vehicle. Hence, the coupling between the vehicle and payload must be fully modeled. Furthermore, several approximation techniques based on analytic and empirical formulations are investigated for computing the hydrodynamic coefficients of the vehicle. Efficacy and limitations of the approximation techniques are assessed by comparison with hydrodynamic coefficients that are estimated using high-fidelity computational fluid dynamics simulations.
    General Audience Abstract
    This thesis presents the model to used to predict the motion of an autonomous underwater vehicle that tows a large object. Our analysis is motivated by the fact that the size of the object is so large that it will have a substantial impact on the motion of the vehicle, and likewise the vehicle will have a substantial impact on the object, requiring that the interaction between the two bodies to be fully modeled. The fluid forces and moments acting on the vehicle are approximated using techniques from hydrodynamic theory and experimental results. The accuracy of the approximation is assessed by comparing of the estimated forces and moments with those seen in high-fidelity simulations.
    URI
    http://hdl.handle.net/10919/84915
    Collections
    • Masters Theses [22188]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us