Show simple item record

dc.contributor.authorMizzotti, Chiara
dc.contributor.authorGalliani, Bianca M.
dc.contributor.authorDreni, Ludovico
dc.contributor.authorSommer, Hans
dc.contributor.authorBombarely, Aureliano
dc.contributor.authorMasiero, Simona
dc.description.abstractPlant forms display a wide variety of architectures, depending on the number of lateral branches, internode elongation and phyllotaxy. These are in turn determined by the number, the position and the fate of the Axillary Meristems (AMs). Mutants that affect AM determination during the vegetative phase have been isolated in several model plants. Among these genes, the GRAS transcription factor LATERAL SUPPRESSOR (Ls) plays a pivotal role in AM determination during the vegetative phase. Hereby we characterize the phylogenetic orthologue of Ls in Antirrhinum, ERAMOSA (ERA). Our data supported ERA control of AM formation during both the vegetative and the reproductive phase in snapdragon. A phylogenetic analysis combined with an analysis of the synteny of Ls in several species strongly supported the hypothesis that ERA is a phylogenetic orthologue of Ls, although it plays a broader role. During the reproductive phase ERA promotes the establishment of the stem niche at the bract axis but, after the reproductive transition, it is antagonized by the MADS box transcription factor SQUAMOSA (SQUA). Surprisingly double mutant era squa plants display a squa phenotype developing axillary meristems, which can eventually turn into inflorescences or flowers.en_US
dc.description.sponsorshipCariplo Foundation [2011-2257]; FP7-PEOPLE-2013-IRSES [FRUIT LOOK]
dc.publisherSpringer Nature
dc.rightsCreative Commons Attribution 4.0 International
dc.subjectdraft genome sequence
dc.subjectgras gene family
dc.subjectpalm phoenix-dactylifera
dc.subjectapical dominance
dc.subjectexpression analysis
dc.subjectplant architecture
dc.subjectmeristem formation
dc.subjectshoot development
dc.subjectfloral meristems
dc.titleERAMOSA controls lateral branching in snapdragonen_US
dc.typeArticle - Refereed
dc.description.notesWe thank Xue Yongbiao (Beijing Institute of Genomics, The Chinese Academy of Sciences) for sharing data in advance of publication. Edward Kiegle (University of Milan) is acknowledged for editing the paper. This work was supported by Cariplo Foundation [grant number 2011-2257 to C.M. and S.M.] and by FP7-PEOPLE-2013-IRSES [FRUIT LOOK to S.M.].
dc.title.serialScientific Reports

Files in this item


This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International