Empirical Evaluation of Edge Computing for Smart Building Streaming IoT Applications

TR Number
Date
2019-03-13
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Smart buildings are one of the most important emerging applications of Internet of Things (IoT). The astronomical growth in IoT devices, data generated from these devices and ubiquitous connectivity have given rise to a new computing paradigm, referred to as "Edge computing", which argues for data analysis to be performed at the "edge" of the IoT infrastructure, near the data source. The development of efficient Edge computing systems must be based on advanced understanding of performance benefits that Edge computing can offer. The goal of this work is to develop this understanding by examining the end-to-end latency and throughput performance characteristics of Smart building streaming IoT applications when deployed at the resource-constrained infrastructure Edge and to compare it against the performance that can be achieved by utilizing Cloud's data-center resources. This work also presents a real-time streaming application to detect and localize the footstep impacts generated by a building's occupant while walking. We characterize this application's performance for Edge and Cloud computing and utilize a hybrid scheme that (1) offers maximum of around 60% and 65% reduced latency compared to Edge and Cloud respectively for similar throughput performance and (2) enables processing of higher ingestion rates by eliminating network bottleneck.

Description
Keywords
Edge Computing, Stream Processing, Internet of Things, Apache Storm
Citation
Collections